
J .  Fluid Mech. (1990), vol. 210, p p .  201-221 

Printed in Geeat Britain. 
201 

The concentration distribution produced by shear 
dispersion of solute in Poiseuille flow 

By A. N. STOKES’ AND N. G. BARTONZ 
CSIRO Division of Mathematics and Statistics, Private Bag Number 10, Clayton, Vic., 

Australia 3168 
*CSlRO Division of Mathematics and Statistics, PO Box 218, Lindfield, NSW, Australia 2070 

(Received 26 October 1987 and in revised form 15 June 1989) 

One of G. I. Taylor’s most famous papers concerns the large-time behaviour of a 
cloud of soluble matter which has been injected into a solvent in laminar flow in a 
pipe. In  the past thirty years, a number of successful attempts have been made to 
derive differently or extend Taylor’s result, which is that the cloud of solute 
eventually takes a Gaussian profile in the flow direction. The present paper is another 
examination of this well-worked problem, but this time from the viewpoint of a 
formal integral transform representation of the solution. This approach leads to a 
better understanding of the solution ; it also enables efficient numerical computations, 
and leads to extended and new asymptotic expansions. 

A Laplace transform in time and a Fourier transform in the flow direction leaves 
a complicated eigenvalue problem to be solved to give the cross-sectional behaviour. 
This eigenvalue problem is examined in detail, and the transforms are then inverted 
to give the concentration distribution. Both numerical and asymptotic methods are 
used. The numerical procedures lead to an accurate description of the concentration 
distribution, and the method could be generalized to compute dispersion in general 
parallel flows. The asymptotic procedures use two different classes of eigenvalues to 
give leading- and trailing-edge approximations for the solute cloud at small times. 
Meanwhile, a t  larger times, one eigenvalue branch dominates the solution and 
Taylor’s result is recovered and extended using the computer to generate extra terms 
in the approximation. Sixteen terms in the approximation are calculated, and a 
continued fraction expansion is deduced to  enhance the accuracy. 

1. Introduction 
G. 1. Taylor’s most cited paper was published in 1953 and is concerned with the 

shear dispersion of a passive solute injected into a solvent in laminar flow in a 
straight horizontal pipe. Taylor’s celebrated result was that any finite cloud of solute 
eventually becomes uniformly spread out over the cross-section of the flow and takes 
up a Gaussian profile in the flow direction. Shear dispersion theory has application 
to a number of fields including environmental fluid mechanics, chemistry, biology, 
engineering ; and the beautifully simple large-time approximation that Taylor 
produced has been developed and embellished by many investigators in the last 
thirty years. The most notable developments of Taylor’s asymptotic theory are due 
to Aris (1956), Philip (1983a, b) ,  Chatwin (1970), Gill & Sankarasubramanian (1970), 
de Gance & Johns (1978a, b )  and Smith (1981, 1987). The derivation of asymptotic 
approximations has been accompanied by experimental work on shear dispersion 
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(e.g. Plumb et al. 1983) and numerical computations (e.g. Gill & Ananthakrishnan 
1967; Houseworth 1984; Stokes & Barton 1985; Barton & Stokes 1986). 

The object of the present paper is to re-examine Taylor’s well-worked problem 
from a fresh viewpoint. It is observed that the shear dispersion problem is linear, 
provided that the solute has neutral buoyancy and the diffusivity of the solute is 
independent of concentration, and therefore the governing equation can be attacked 
using integral transforms. Specifically, the governing parabolic partial differential 
equation is Laplace transformed in time and Fourier transformed in the flow 
direction, and this gives an eigenvalue problem for the cross-sectional dependence of 
the transform of the concentration distribution. The eigenvalue problem is examined 
both numerically and asymptotically, and calculations are made of the concentration 
distribution. 

The treatment of the problem by integral transforms has several attractive 
features: itt enables a unified theory to be presented for the dispersion of passive 
solute in Poiseuille flow, it can form the basis for new asymptotic approximations 
and extrcmely efficient numerical schemes, it is capable of modification for other 
flows (such as the plane Poiseuille flow with cross-sectional drift described by Jayaraj 
& Subramanian 1978), and it clears up confusion over anomalous results reported by 
Barton (1983). 

Section 2 of the paper contains mathematical preliminaries dealing with the 
definition of the integral transforms, the derivation of the crucial eigenvalue 
problem, and the formal inversion of the transforms using residue calculus. The 
eigenvalue problem is solved numerically in $3, and the transforms are inverted by 
a combined analytical and numerical procedure to give the concentration 
distribution. Sections 4, 5 and 6 follow the same transform procedure using 
approximations to the eigenfunctions. A local approximation near the origin in the 
transformed space is used in $5  to obtain large-time approximations, whilst in $6, the 
rather complicated large parameter asymptotic behaviour is analysed to yield 
regional approximations for small time. Of these, the trailing-edge approximation 
appears to be new. The regions of validity of the various approximations overlap to 
an extent sufficient to provide a complete picture of the solution. 

We conclude this introduction by emphasizing the main features of the paper. It 
is possible to use integral transforms to analyse shear dispersion in parallel flows in 
general and in Poiseuille flow in particular. The resulting numerical method is 
straightforward to  implement, and can be made to give better accuracy than the 
alternatives. The analysis of eigenfunctions gives an interesting association between 
types of asymptotic behaviour in the transform variables and behaviour of the 
concentration distribution in various regions. Finally, use of the eigenvalues in 
approximations provides an analytic alternative to the more time-consuming 
numerical methods, as well as some insight into the qualitative behaviour of the 
solutions. 

2. Mathematical preliminaries : integral transforms and the eigenvalue 
problem 

We consider the parabolic partial differential equation 
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subject to the conditions ac,ar = at = o, 1, 

xnC+O as x - f c o ,  n = 0 , 1 ,  ...> 

C(r,  x, 0;  P) = C,,(r, 2). 

This problem describes, in dimensionless coordinates moving at  the discharge 
speed of the flow, the axially symmetric dispersion of a cloud of passive solute which 
has been injected into a solvent in laminar flow in a straight horizontal pipe. Problem 
(1) is attacked in the present paper using a Fourier transform in the axial coordinate 
x and a Laplace transform in time t. Accordingly, define the Fourier transform of 
C(r,  2, t ; P) by 

ePiAz C(r,  x, t ; P) dx 

and take the Fourier transform of (1) to  obtain 

a@ 1 a a@ 
-+iA(l-2r2)@=-- r- - A 2 P 2 @ ,  
at r a r (  a r )  

a@ - _  - 0 a t  r = 0,1, @(r, A ,  0 ;  P) = 
ar 

The PBclet-number dependence can now be removed by writing 

@(r, A, t ;P) = f ( r ,  A,  t)  e-tA2p-* 

in which f ( r ,  A, t )  is the (infinite-PBclet-number) solution of 

We now define the Laplace transform of f ( r ,  A, t )  by 

F(r,  A,  w )  = e-wt f ( r ,  A,  t) dt, r 
where F(r ,  A, w )  is the solution of the problem 

d2F 1dF 
-+---[w+iA(l-2r2)]F = - f (  r , A , O ) ,  
dr2 r dr  (3) 

dF/dr = 0 a t  r = 0 , l  

Let A(r ,  A, w )  and B(r, A, w )  be two solutions of the homogeneous form of (3) subject 
to the boundary conditions 

A = 1 and dA/dr = 0 a t  r = 0 for all (A ,  w ) ,  

B = 1 and dB/dr = 0 a t  r = 1 for all (A ,  0). 

The solution of (3) is given by 
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where the Wronskian W ( r , A , w )  is found to be 
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W ( r ,  A,  w )  = A’( 1, A,  w ) / r ,  

in which a prime denotes differentiation with respect to r .  
Now A ( r ,  A,  w ) ,  B(r, A, w )  and f(r, A,  0) are entire functions of A and w ,  and so the 

transformed concentration F(r ,  A,  w )  is analytic everywhere except for poles a t  zeros 
of the Wronskian, that  is, where 

A ’ ( l , A , w )  = 0. (4) 

Therefore, the homogeneous form of (3) defines an eigenvalue problem in which the 
cigcnvalue w depends on the parameter A so as to satisfy (4). Define the eigenvalue 
branches by w,(h), 

The Fourier and Laplace transforms are now inverted using residue calculus to 
give the concentration distribution C(r,  x, t ; GO)  for infinite Pdclet numbers. (The case 
for finite Pdclet numbers is explained below.) Formally, we have 

n = 1, . . . . 

in which the contour r may depend on A but should enclose the poles of F ( r ,  A,  w )  for 
each A.  Then the integration with respect to w may be achieved by summing the 
residues at the poles to give 

i m  
(5) C(r,  x ,  t ; G O )  = - eiA5 Y ( r ,  A, t )  dA, 

2n L 
in which Y ( r , A , t )  is the series 

00 

Y ( r ,  A, t )  = C eWn(h)tFn(r, A, w, (A) )  (6) 
n=l  

with each term F, given by the residue of F ( r ,  A, w )  at w , ;  that  is, 

F7A(r, A, wn(A) )  = - “+Idn lim F2(aF/aw)-’ .  (7) 

Equations (5)-(7) give a way of computing the concentration C(r,  x ,  t ; 00) provided 
that the series (6) converges and the resulting sum is integrable. 

Equation (2) is a device for removing the PBclet number ; the modified problem is 
one of infinite Pkclet number, where axial diffusion is negligible. As Taylor (1953) 
remarked, this approximation is often justified, but where i t  is not, the solution for 
finite number can be recovered by convolution : 

~ ( r ,  z, t ; P )  = (7ct)-ap ~ ( r ,  z - X ,  t ;  a) e - X Z p 2 / 4 t ~ .  (8) 

The effect of axial diffusion in (1) is accounted for by finite Pkclet number. Thus the 
profiles become smoother with decreasing Pdclet number. 

JYm 

3. Computation of the concentration distribution 
The evaluation of the concentration distribution C(r ,  x, t ;  GO)  for infinite PBclet 

number proceeds in three stages. First, the roots w,(A) of (4) have to be found by an 
iterative process ; then the residues JL(r, A,  w n ( h ) )  have to be evaluated ; and, finally, 
the Fourier inversion (5) has to be performed numerically. 
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The roots w,(A) of A’(1, A , @ )  = 0 are found by the Newton-Raphson procedure 
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The values of A:( 1, A, w )  which were required in this procedure were obtained by 
numerically solving the inhomogeneous equation 

d2A, ldA, 
-+-----[w+iA(l-2r2)]A, = A  
dr2 r dr 

(obtained by differentiating the homogeneous form of (3) partially with respect to w )  
under the homogeneous initial conditions 

dA,/dr =A,,, = 0 at r = 0. 

The initial-value problems determining A(r ,  A ,  w )  and A,,,(r, A ,  w )  were solved by a 
Taylor series procedure using a 50-point grid. The procedure (9) usually only required 
one or two iterations since h was regularly incremented and excellent starting 
estimates were available. Starting estimates for A = 0 were obtained analytically. 
For h = 0, A(r ,  A ,  w )  satisfies the equation 

d2F dF 
dr2 dr 

r2-+r--r2wF = 0 

under the homogeneous boundary conditions A’(0, 0, w )  = A’( 1,0, w )  = 0 (the former 
by construction and the latter in order to give the eigenvalues). The solutions for 
A = 0 are A(1, A ,  w )  = J0(& r ) ,  and the eigenvalues for A = 0 are w, = -j:, 
n = 1,2,  ... where the j:, are the zeros of Jh (noting that jk = 0). This argument 
provides a sequence of starting points for the various branches and serves to 
enumerate them : thus branch 1 originates from ( A  = 0, w = 0) and branch ?z (n > 2) 
originates from ( A  = 0, w = -f:-l). 

Figure 1 shows trajectories of the first six zeros of A’( 1, A,  w )  for real positive A. 
Each crosses the real axis a t  h = 0 as explained above and follows a path for A 
negative which is the mirror image in the negative real w-axis. Figure 1 does not show 
the A-values, so one cannot be sure that the real part of @,(A) diminishes with n for 
each fixed A. However, it is clear that the real part of each w,(A) has an upper bound 
(for each n and any A )  which is negative, and this ensures the convergence of (6) since 
the residues Fn are not exponentially large. In  practice, the rate of convergence of (6) 
increases with t and it was usually sufficient to restrict attention to the first six 
branches. 

The next step is concerned with the evaluation of the residues Fn(r,A,wn(A)) 
defined by (7). In fact, the use of the property 

lim A(r,  A,  w )  = B(r, A, w,)A(l ,  A ,  wn)  
W+W, 

and simple manipulations of the integral representation of F(r,  A ,  w )  give that 

A(r ,  A ,  wn) A(8, A ,  ~ n ) f ( ~ ,  A ,  0) sds J: Fn(r, A,  w n )  = 
AL(1, A ,  w,)A(l, A ,  0,) 

The final stage of the computation is the numerical evaluation of the Fourier 
inversion integral (5). A difficulty here is that the integrand along the real A-axis is 
oscillatory. This difficulty remains if the summation in (6) is performed before 
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attempting the inversion integral, and the oscillations are then disordered. The 
oscillations are caused by fairly rapid change in the exponents iAx+w,(A)t of the 
terms in (5), (6). Fortunately, the contributions from individual terms can be 
integrated over quite long intervals by linearly interpolating the exponent. Thus, to 
integrate exp ( f ( A ) )  from A, to A,, we use the approximation 

Similarly simple approximations were employed near a stationary point off(A). The 
inversion procedure is also simplified by the fact that  the contributions from higher 
eigenvalues o,(A) are small and only significant over a small range of A. 

Computations were carried out for the case in which the initial distribution of 
solute is a pulse uniformly spread over the cross-section of the pipe; that is, 

C,(r,z) = &(4 

which implies that f ( r , A , O )  = 1. 

For convenience of presentation, results are given for the cross-sectional integral 

b ( z , t ; P )  = 2 rC(r,x,t;P)dr 1: 
in which the integration over the cross-section was performed before attempting the 
Fourier inversion (5)-(7); that is, 

P,(A, w, (A) )  eiAz+wn(A)t dA, (12) 
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in which Fn is 

Fn(h, wn(h) )  = (13) A : ( l , h , w n ) 4 1 A w n ) ’  

Figure 2 (a)  shows the profiles c ( x ,  t ; 00) for infinite Pkclet numbers and at  various 
dimensionless times. At the applicable times, the results agree approximately with 
those of Gill & Ananthakrishnan (1967) derived using finite-difference methods from 
a slightly different initial condition, and with those of Houseworth (1984) derived 
using a Monte-Carlo method. The results also agree with those of Barton & Stokes 
(1966) derived using a hybrid numerical method. Figure 2 (b )  shows the concentration 
distribution for various Pkclet numbers at the dimensionless time t = 0.05. These 
computations were made using the convolution integral (8).  The distribution of 
solute a t  large time clearly approaches the Gaussian curve proposed by Taylor 
(1953). For infinite Pkclet number, however, the distribution is band-limited, and the 
inconsistency of this requirement with the Gaussian form is evident a t  small times. 

4. Approximations and the complex plane 
Approximations are developed for both small and large time in the following 

sections. The pattern is similar in each case. An appropriate approximation is 
developed for A(r ,  A,  w )  and used in the eigenvalue condition (4) to give one of the 
variables as a function of the other. After various manipulations, the representation 
(5), (6) takes the form of a series multiplied by the exponential of the two most 
significant terms of the series derived from the original exponent (wt + ihz). The 
integral ( 5 )  can then be evaluated directly. 

Three regions are approximated in this way. They are the central region for large 
time, and the leading and trailing edges for small time. As will be shown, the regions 
of validity of these approximations merge to give a reasonably complete description 
of all the features of interest in the solution. 

To derive accurate approximations of this kind, it is useful to deform the 
integration contour into a steepest-descent contour passing through a saddle point 
of the integrand. If the proposed approximation to the integrand is good along the 
part of such a contour where it is large enough to  affect the overall integral, then the 
resulting integral will be accurate. 

As described above, w ( h )  has a number of branches, and these meet a t  branch 
points in the complex plane. These are also branch points of the integrand, and they 
are its only singularities in the finite plane. These branch points are plotted in figure 
3. Their significance is that they mark the boundaries of regions of relatively smooth 
behaviour in which the various approximations may be applied. 

A knowledge of the location of the branch points is also useful if the numerical 
integration on the real h-axis proves to  be difficult. This happens near the ends of the 
profile, and the best solution is to move to a more appropriate contour, of which the 
ideal is a steepest-descent path of the type mentioned above. In  the calculations 
presented above, sufficient accuracy was obtained by integrating on the real axis 
alone, although calculations on other contours were done as a check. 

There is a connection between the rather sudden changes in the curves of figure 1 
and the branch points plotted in figure 3. The trajectories in figure 1 are the images 
of the imaginary axis in figure 3 (i.e. the real A-axis), and there are several branch 
points lying quite close to that axis. There is one at (12.395, 126.93), which is very 



208 

20 

15 

c 10 

5 

A .  N .  Stokes and N .  G. Barton 

(4 

t = 1.0 

20 

15 

10 

c 

5 

0 

- 5  
- I  

A 

I I I I I 

5 -0.10 -0.05 0 0.05 0.10 ( 

X 

15 

FIGURE 2.  Profiles c for ( a )  PBclet number P = co and various values o f t ;  (b )  t = 0.05 and 
various values of P .  
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FIGURE 3. Branch points of w when expressed as a function of A. Note that there are infinitely 
many branches, and only two meet at each point. 

close indeed, and is responsible for the very sharp turn of curve 4 in figure 1. In  this 
neighbourhood there is a change from one type of behaviour (type I1 of $6) to one 
of two types that will be followed thereafter (type I or 111). Which type emerges 
depends on which side of the branch point the trajectory passes. 

This changeover was noted by Barton (1983), who also focused on a region near 
(12.395, 126.93), although his parametrization was slightly different. Since only one 
type of behaviour (I) was then expected, the appearance of type I11 behaviour was 
considered ' anomalous ' . 

5. Approximations for large time 
We begin by using our Fourier-Laplace transform approach to extend Taylor's 

(1953) approximation. The derivation can be done mechanically by computer, and 
many extra coefficients calculated. For large time, the first term in the representation 
(5) ,  (6) is exponentially large in comparison with the other terms. Thus, an 
approximation to the solution is 

in which @,(A) is the eigenvalue branch which emanates from h = 0, o = 0. The 
integral (14) is now approximated using Laplace's stationary-point method. 

If the solution A(r,  A ,  w )  of the homogeneous form of (3) is expressed as a power 
series in r ,  the coefficients are polynomials in h (or more conveniently, A = ih) and 
w .  The first few terms are 

(15) A(r,  A ,  w )  = 1 + ( A  + w )  ~ ' / 4 + r ~ [ ( w + A ) ~ -  8/1]/64+. . . . 
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n lm 0 1 2 3 4 5 

0 1  0 0 0 0 0 
1 0  0.83333 0 0 0 0 
2 -0.138B8S -0.381324 0.347222 0 0 0 
3 -0.0527033 -0.387858 -0.317770 0.0964506 0 0 
4 0.0330472 0.9208640 -0.210619 -0.132404 0.0200938 0 
5 0.0344749 0.175368 0.143264 -0.0507667 -0.0367789 0.003349 

TABLE 1. Table of coefficients 10m%,, for Taylor-Chatwin large-time approximation. 

The quantity A')r, A ,  w )  can be represented as the series 

A'(1, A , w )  = 0 /4 -A~/ l92+0~ /32-h /96  

-/13/7680-4300(A/256)4-11/180~(A/16)2.. . , (16) 

and setting this to zero (as in the eigenvalue condition (4)) and solving for w gives 

w, (A)  = A2/48-A3/2880-41A4/(63 x 40960)+ 13A5/11059200.. . . 

These results can be substituted in (13) to give F l ( A , w ( A ) ) ,  

FI (A,w(A) )  = 1-A2/720+ 17As/322560+307A4/92897280.. . . 

Finally, (14)-( 16) give the mean concentration 

in which the first two terms in the exponent have been retained and the rest 
expanded as a series in t and A .  It now remains to integrate (17) term by term. We 
use the substitutions T = (t/24)4, X = x/T and u = AT to obtain 

- 

40 448 720 
C(z,t; co) = - 

u9 4iu7 iiu5 
+ . . .] eU2/2+XU du 

in which the various terms can be evaluated using the standard results 

where He, implicitly defined by this expression, is a Hermite polynomial. 
The fact that the algebra in the above approach is systematically reduced to series 

operations means that the labour can be delegated to a computer, and we have 
extended the series to order T-lS to obtain 

5 1 n  

n-o m-o 

Some of the coefficients are recorded in table 1, and the terms up to order TP3 agree 
with Chatwin's (1970) improved version of Taylor's result. 

A comparison of the profiles calculated using this series, for t = 0.2, 0.5 and 1.0 is 

(18) C - (27c)-te-XZ/2 - Tn+i a n m  Hezm+n(X)* 
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shown in figure 4. The approximation behaves as an asymptotic series in that the 
terms eventually become large, and i t  is important to stop summing a t  some 
appropriate time. We avoided this difficulty by converting the series to a continued 
fraction expansion in 1/T. These expansions do not have the tendency of the series 
to diverge after a certain point, and so gave a fairly modest improvement in 
accuracy, and much added convenience. 

The approximation is excellent for t 2 0.5, but is not very good for t = 0.2 and X 
negative, although curiously it is quite good for X positive. The accuracy is limited 
essentially by the rate of convergence of the series (16) for w ,  and this is governed by 
the proximity of the branch point (-3.866, 13.199) (see figure 3). 

An alternative approach, used by Philip (1963a, b) ,  can adequately approximate 
the solution including the branch points. He dealt with what was in effect a rational 
function equivalent to  the series for w in terms of A ,  and equated truncated parts of 
the numerator to zero. The various roots corresponded to our branches, and the early 
parts of the trajectories in his figure 3 correspond to ours in figure 1. An equivalent 
approach here is to truncate (15) and solve for the various zeros of the polynomial 
in w ,  given A. This does not lead to  an expression which can be explicitly integrated, 
but can be substituted in (14), followed by numerical integration. If the contour for 
this last stage is well chosen, the result is an improvement on the use of (18). 
However, the choice of contour depends on the values of x and t ,  so the 
implementation is more complicated. 

6. Approximations for small time 
At small times, different types of approximation are required near the leading and 

trailing edge. When x and t are small, the dominant contribution to (5), (6) is derived 
using an asymptotic expansion for A, w large. In  particular, it is necessary to find 
asymptotic expansions for the eigenvalues w ( A )  for large A. Note that the eigenvalucs 
displayed in figure 1 behave curiously in that all except the first move initially into 
the upper half-w-plane, but the fourth and sixth subsequently reverse direction and 
move into the lower half-plane. It will be shown that the behaviour of one class of 
eigenfunctions (branches 1, 4 and 6 on figure 1) determines the leading edge of the 
solute cloud a t  small times, whilst another class (branches 2, 3 and 5 )  is associated 
with the trailing edge. 

Consider the homogeneous form of (3) under homogeneous boundary conditions 

dF/dr = 0 a t  r = 0 , l .  

We make the substitution s = r2 to find the following equation for F(s ,  A, o) : 

4 8-+- = (w+iA-2ihs)F [ :ST 3 
The solution for F is 

P(s) = e-bS’zM(a, 1, bs) 

where M is the confluent hypergeometric function, and 

b = ( - 2iA)i, 
w+iA a = A + -  ’ 4b ’ 

The small-time approximation requires an asymptotic expansion of P(s(A)) for h 
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FIGURE 4. The Taylor-Chatwin approximation for large time, plotted at (a) t = 0.2, ( b )  0.5 and (c) 
1 .O compared with the proqles calculated by numerical integration. The horizontal axis is the 
normalized variable r(24/t)P, corresponding to 'standard deviations ' of the eventual Gaussian 
form. . . . . . ., Taylor approximation ; --, true profile. 
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large. By standard results for the confluent hypergeometric function (Abramowitz & 
Stegun 1965, 13.5.19), we have that, as A+ co, 

M(a,  1, bs) - ebs/'(l -2a)-i[Ai(~') cos (an) +Bi(7') sin (an)],  

where 

and Ai and Bi are the Airy functions. We use a slightly more accurate version with 

7' = (i(i-a)(sinh28-28))1, where cosh2B = bs/(2-4a). (20) 

In  this form it is consistent with the WKB approximation (Abramowitz & Stegun 
1965, 13.5.16) when 7' is large. 

The derivative dF/dr is then 

U/dr  x - b2( 1 - 2u)f[Ai'(7') cos (an) + Bi'(7') sin (ax ) ]  

and the eigenvalues are approximately the zeros of this expression when s = 1 and 
7 is the corresponding value of 7'. To see where the eigenvalues are found, it is useful 
to study the asymptotic behaviour of the Airy functions. We have 

and this suggests a division of the 7-plane into three equal sectors. Sector I is the 
region larg ( T ) I  < in, sector I1 the region $r < arg (7)  < n, and sector I11 the region 



2 14 A .  N .  Stokes and N .  Q. Burton 

-n < arg (7) < -in. The function Ai’(z) is rapidly diminishing in the interior of 
sector 1, and increasing in sectors I1 and 111. It is real and oscillatory on the real 
negative axis which separates I1 and 111, and there all the zeros of Ai and Ai‘ are 
found. There is symmetry based on rotation by gn radians, and this can be exploited 
by defining 

A,(z )  = Ai(x), A,(x) = vzAi(w2x), A3(x)  = vAi(vx), where 11 = e2ni/3. 

Then A, (x )+A, (x )+A, (x )  = 0, for any x, and A z , A 3  are diminishing solutions in 
sectors TI and I11 respectively. 

Using the relations Ai’(x) = -AL(x) -Ai(x) ,  Bi’(x) = i(A;(x)-Ai(x)) the approxi- 
mate eigenvalue criterion may be written : 

e-iarA;(~)+eiQnA;(7) M 0 or e2ain x - l t ; (7) /Ai(7) .  

In  this last criterion, the behaviour of both sides is simplified over large sectors. For 
example, in sector T of the 7-plane, A’,+Ai x 0, and so elaix x 1, or a is approximately 
an integer. This is called the type I condition. In  sector 11, 

AL(7)/Aj(7) = ie4/3T1 

so in(u-a) x $7;. This is a type I1 condition. The condition within sector I11 is 
essentially the same. Conversely, if a lies well within the upper half-plane, i.e. 
Im (a) & 0, then A ; ( T ) / A ~ ( T )  M 0. This is true when 7 is within sector 11, but it is also 
true if 7 is close to a zero of A;. This last is called a type I11 condition. 

The association between asymptotic behaviour in the parameters and particular 
regions of the flow arises through the location of saddle points in the integrand of (5), 
(6). If an approximation is good in the neighbourhood of a saddle point, and a 
steepest descent contour is followed in that neighbourhood, then the approximation 
will determine the approximate value of the int)egral. Now the approximate location 
of the saddle point is where the exponent (wt  + ihx) is stationary with x and t large, 

aiA/aw M - t / x .  and that is where 

By substitution, it can be shown that the derivatives in the respective regions are: 

a 

aih diA aih 
aw aw aw 

I. -%-l ;  11. - x o ;  111. - %  1 .  

Type I approximation, then, determines behaviour near the leading edge x x t ,  and 
type I11 approximation determines it near the trailing edge. Type I1 approximation 
is associated with the physically unrealized region 1x1 $ t .  

The curves in figure 1 may now be interpreted. Each, except the first, begins as a 
type I1 approximation, and approaches an approximately parabolic region in which 
there are branch points. Near these branch points, all three kinds of behaviour are 
found. From there on, each curve enters a region of either type I (curves 1 , 4  and 6) 
or type I11 (curves 2, 3 and 5 )  behaviour. 

As noted above, the transition to type I11 behaviour was the ‘anomalous’ 
behaviour noted by Barton (1983). The first observation of type I11 behaviour seems 
to  be in the work of Philip (1963b). Here approximate eigenvalues emerge as roots 
of a sequence of polynomials of increasing order in the slightly different parameters 
iQ = w-ih  and A‘ = A/i51. The first two roots found when B is large are clearly of 
type I, but the third, which appears with the cubic approximation, does not a t  all fit 
in the same pattern. Chatwin (1973) noted that when 51 = 100, A’ M 2.32-0.32i for 
this root in Philip’s approximation, whereas his expected Type I version gave 
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0.85-0.35i, and thought that this was because of a failure in Philip’s method. But 
in fact the type 111 approximation, calculated from a numerical solution of the 
differential equation, is A‘ = 2.055 - 1.69i, and in the circumstances Philip’s value is 
as good an approximation to this as can be expected. 

6.1. Leading-edge approximation 
With the Type I eigenvalues, we have eaiurr x 1 so that a+ -n (n = 0 , 1 , 2 , .  . .) and 

w +  -iA-(4n+2)(-2iA); as A+co. (21) 

These eigenvalues were found by Chatwin (1973). Their corresponding cigenfunctions 
are 

(22 )  

where L,  are the Laguerre polynomials. These functions are large near r = 0 and 
decay towards the boundary, and hence describe the concentration distribution in 
the central, fast-moving part of the flow. In  figure 1, these eigenvalues are labelled 
1 , 4  and 6 and they correspond to n = 0, 1 , 2  respectively. These eigenvalue branches 
are associated with the leading edge of the solute cloud. 

Thus the concentration distribution is given by (5), (6), where the residues 
Fn(r, A, @,(A)) are given by 

$n(r,  A, o , (~))  = e-br2’2Ln(tw2), 

For the presentation of results, we only consider solute dispersion from a &-function 
source as in (lo), so that f ( r ,  A ,  0) = 1. The approximation for the leading edge of the 
solute cloud then takes the form 

or 

where 8, is the Jacobi theta-function. For x < t ,  the exponents are negative and the 
series (24) converges rapidly with the first term dominating as x + t from below. This 
solution was first found by Lighthill (1966) as an exact solution of the concentration 
equation far away from the tube walls. Results are plotted in figure 5(a,  b )  for t = 
0.05 and 0.1. Further results for larger values o f t  are plotted in figure 6(a, b ) ;  these 
are discussed in $7 .  

6.2. Trailing-edge approximation 
The type I1 condition with Im (a )  + 00 as h + 00 implies that 

71 e-2ix/3 = d 
n )  

where the d,, n = 0,1,  . . . , are the roots of Ai’(x) = 0. After some manipulation, this 
case gives 

and branches 2, 3 and 5 on figure 1 are of this kind with n = 0, 1 ,  2 respectively. The 
associated eigenfunctions are found to be 

wn + ih + dn(4ih$ as A + 00 (26) 

$, = .r’(sinh28)-iAi(7’), (27) 
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with 8,~' as defined in (20 ) .  These are oscillatory and largest near r = 1 which is the 
slowest, moving part of the flow, and these eigenvalue branches describe the trailing 
edge of the solute cloud. For the case off(r,A,O) = I ,  substituting (26), (27) in (23 )  
and finding the inverse Fourier transform of the residues F, gives the result, to first 

(28) 
order in 1 ,  rr, 

where 

2 3 3zv 
C(z, t ; m) = e - z h n d  (h ,  Ai(hi) + Ai'(hi)), 

n-0 2t 

We believe that this expression (28) is new. It is generally very rapidly convergent 
over n,  since the Airy function diminishes about as rapidly as the exponential factor. 

The series can be improved by including extra terms in the expansion of the 
confluent hypergeometric function in terms of Airy functions. These expansions are 
analogous to the ' uniform asymptotic expansions ' of the Bessel functions. Briefly, 
the expansions are of the kind 

SF' ( 8 )  = c-f( 1 + 0.3~7 + . . . ) T; Ai'(7) + ( - 0.3 - 0.030~7 . . . ) 7-i Ai (7) ,  

F ( s )  = c3( -0.078571 - . . .) 7: Ai'(7) +7-fAi(7) (1 - 0 . 3 ~ 7  + . , ,), 
where c = (1 -2a)-f. 

The approximations involve the integrals 
I- 

I .  = m j  e-m-3J3+him-P dm, j a positive or negative integer. 
3 J, 

The contour C comes from infinity along the direction fn, and goes out to infinity 
along the direction -in. The integrals satisfy the recurrence relation 

and the differential relation 
4 + 3  = 2h$*+2 + j 4  

I !  = I 
3 1+2' 

Init,ial values for I - l ,  Zo and I ,  are sufficient to generate all the terms. It is found 
that I, and I ,  can be expressed in Airy functions: 

ZJh) = e-2h3/2Ai(h2), I , @ )  = e-2a3/2(hAi(h2)+Ai'(h2)), 

but I-, is a little more difficult. We used a table of values obtained by solving the 
system of equations 

rL, = I , ,  4 = I ,  = 2hI,, I ;  = I3 = 2hZk+10. 

As h increases from large negative values, the desired solution is the most rapidly 
increasing, and so can be obtained by solving from arbitrary starting conditions 
there, and multiplying by a normalizing factor to  give the correct value a t  h = 0. 

The first, correction to the series (28) is therefore 
m 

C ( ~ / t ) f ~ v " ,  d,*[(O.9 + 1 . 8 / ~ ,  + 0.8di)10(h,) + (1.8 - 0.8di)  I l ( h n ) ] ,  
n=O 

but the complexity of the succeeding corrections increases rapidly with increasing 
powers of tf. We were able to  obtain coefficients for the first nine corrections, i.e. up 
to and including O(t4) ,  but fortunately, i t  is never necessary to sum over both many 
branches and many powers of ti at the same time. If t is other than very small, the 
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Branch 1 
52.75265 0 0 0 0 
19.864 97 22.991 64 0 0 0 

-5.31640 3.72875 5.01032 0 0 
7.39578 - 1.45641 -0.26065 0.72790 0 

- 3.855 32 4.678 7 1 0.10006 -0.19378 0.07931 

Branch 2 
13.86667 0 0 0 0 
- 3.096 29 10.15822 0 0 0 

4.98973 -6.74996 3.72346 0 0 
2.11450 12.72778 -4.11633 0.90988 0 

- 18.63423 - 15.70065 8.71188 -1.40717 0.16676 

TABLE 2. Table of coefficients ctr: for trailing-edge, small-time approximation. 

minimum value of z in the range -t < 2 < t is reasonably large, and only the first 
branch really matters. So we present, in table 2, some coefficients with the 
appropriate values of d,, vn, n = 1,2 substituted. These values are: 

d,  = -1.018793, V ,  = 1.48262, d,  = -3.24820, v 2  = -0.759842. 

The coefficients, denoted cgt in the usual matrix convention, are to be used in the 
formula 

. -. 

The results are shown in figures 5 and 6, and discussed in the next section. 

7. Discussion of approximations and conclusion 
We have extended the large-time Taylor-Chatwin approximation for dispersion in 

Poiseuille flow and introduced a new approximation, valid near the trailing edge, to 
complement the known small-time approximation near the leading edge. These 
approximations are compared in figures 4-6 with the numerical solutions obtained 
using the spectral method. Between them, the approximations predict all the 
qualitative features of the flow, and a t  least one of them is effective at all parts of the 
profiles at all times. The crossover region is in the neighbourhood of t = 0.2. For 
t < 0.1, the small-time approximations (24), (28), (29) are satisfactory, and for 
t > 0.5, the extended large-time approximation (19) is entirely adequate. 

The large-time approximation eventually fails primarily because it is based on a 
power series expansion on a surface which inevitably has branch points. It is a 
divergent asymptotic series. It is also an expansion based on only one of the saddle 
points; there are others on other branches. The limiting effect of the branch points 
is more important at small times, however, and it is not necessary to examine saddle 
points other than the first. 

The small-time approximations are limited essentially because they are based on 
eigenvalue solutions based on one or other boundary of the ordinary differential 
equation (0.d.e.) (3), assuming the other is at  infinity. They fail when material 
reflected from this boundary becomes important. So, although the convergence of the 
series (24) and (28) over time is quite satisfactory, there is an error which cannot be 
removed by just taking more terms. 

Of the two small-time approximations, the new trailing-edge one seems much the 
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more useful. That is partly because the more obvious features of the profile occur in 
this trailing region. Moreover, it is clear from figure 6 that  the crossover region in 
effectiveness lies well forward of the midpoint of the profile, and that only the 
trailing-edge expression comes close to approximating the eventual Gaussian shape. 

We have shown that Fourier transformation, coupled with use of residue calculus 
in the complex plane of the transformation parameters, gives a quick and accurate 
numerical method of calculating the averaged profiles. With further analysis, the 
method yields reasonably accurate approximations which cover the entire domain on 
which solutions may be needed. The results are specialized to the case of uniform 
initial delta-function distribution and infinite Pdclet number. It is time to review 
these assumptions to see how restrictive they are. 

The assumption of infinite PBclet number, equivalent to ignoring longitudinal 
diffusion, creates no problem. As explained in $3, restoration of finite P6clet number 
requires only a convolution with an appropriate Gaussian, i.e. a smoothing operation. 
More general initial distributions, uniform across the cross-section, can be treated by 
using the solution described here as a Green function. The restriction to cross- 
sectionally averaged solutions was necessary for the presentation of results to avoid 
dealing with the radial distance as an extra variable, but there is no difficulty in 
principle with calculating the pointwise solutions, either by the approximations of 
$$5 and 6, or the numerical method of $3. 

An initial distribution that is not uniform across a section, but is still radially 
symmetric, is also explicitly provided for by the method of this paper. A distribution 
without radial symmetry, though, would introduce a third space variable, creating 
a need to invert a triple integral transform. We would approach this task with 
trepidation. 

One might wonder whether flows of other cross-sections could be treated in the 
same way. An important feature of our original partial differential equation ( 1 )  is 
that thc coefficients depend on only one of three independent variables, leaving an 
0.d.e. to analyse after integral transformation. The fact that this 0.d.e. is the well- 
known confluent hypergeometric equation is not critical ; the methods of saddle- 
point approximation and turning-point analysis used are quite general. But if the 
coefficients depend on more than one variable in such a way that the equation after 
integral transformation remains a partial differential equation, in a reduced number 
of variables, then the prospect for approximation is less promising. Nevertheless, if 
the dimension of the transformed problem is even one less, the numerical procedure 
of solving this problem, and inverting the integral transformation by residue calculus 
may be appealing. 

As well as presenting a useful numerical method, we have sought in this paper to  
show that there is a real link between the structure of the implicit function of the two 
transform variables and the physical characteristics of the flow. This is reflected in 
the different regions of utility of the approximations based on different regions of the 
transformed domain. There is every reason to expect a corresponding association in 
any other flow for which a similar transformation is possible. That means that short- 
time behaviour, which is necessarily local, will be of different type in different flow 
regions, and each different type will correspond to a different kind of asymptotic 
behaviour in the far field of the transformed variables. Correspondingly the long- 
term behaviour, when different flow regions have had the opportunity to affect each 
other, will be explained by the near-zero behaviour in the transformed plane. It is 
worth remarking that although attention has been paid to the branch points in the 
expression of one variable as a function of another, their role is that  of a mechanical 
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inconvenience and a reflection of the presence of transition from one type of 
asymptotic behaviour to another, rather than as reflecting physically important 
characteristics in themselves. 
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